Sunday, 9 November 2014

Exponential Smoothing of Batting Statistics



In this blog post, I will describe how I used exponential smoothing to weight the four seasons of batting statistics I have on my fastball team.

The point of exponential smoothing, in this case, is predict the player’s performance using all the data available but give the most current data greater weight than older data.  This is based on the assumption that players get better with experience or worse with age.

Here is the four years of data I have on the players' batting in reverse chronological order.

2014













Player
AB
R
H
2B
3B
HR
RBI
SB
CS
BB
SO
HBP
SAC
A
28
5
9
1
0
0
2
4
0
5
7
3
0
B
25
3
8
0
1
1
4
0
0
1
9
0
1
C
6
0
0
0
0
0
0
0
0
0
5
1
0
D
32
7
10
1
0
0
7
2
1
1
8
1
0
E
36
10
9
4
0
1
10
1
0
6
12
0
0
F
28
5
6
1
1
0
3
0
0
3
8
1
0
G
53
13
15
3
0
0
5
5
0
10
19
0
1
H
36
7
11
1
0
2
5
0
0
3
9
0
0
I
46
6
11
2
0
1
8
0
0
2
14
0
0
J
31
6
10
1
2
1
3
1
0
0
11
0
1
K
14
3
6
4
0
0
1
0
0
1
5
0
0
L
29
2
11
4
0
0
5
0
0
1
10
0
1
M
42
9
10
1
0
5
15
0
0
5
9
0
0

2013













Player
AB
R
H
2B
3B
HR
RBI
SB
CS
BB
SO
HBP
SAC
A
38
15
14
4
1
1
4
4
0
7
8
0
0
B
40
17
17
3
2
5
15
0
0
5
6
0
1
C
23
3
2
1
0
0
1
0
0
0
7
0
1
D
31
4
10
3
0
1
4
1
0
3
6
0
0
E
38
5
11
2
1
3
7
0
1
3
7
0
0
F
32
4
10
3
0
0
6
0
0
0
5
1
0
G
44
13
18
1
3
2
6
3
0
4
10
4
1
H













I
42
3
14
3
0
0
7
0
0
2
16
1
0
J
38
9
11
1
1
0
2
8
0
1
7
2
1
K
22
1
4
0
0
1
6
0
0
3
10
0
0
L
25
5
9
1
0
1
3
0
0
7
10
0
1
M
40
4
14
2
0
0
1
0
0
4
14
1
0

2012













Player
AB
R
H
2B
3B
HR
RBI
SB
CS
BB
SO
HBP
SAC
A
37
8
12
2
1
0
5
5
0
6
10
1
1
B
44
11
15
1
1
3
15
1
0
5
8
0
1
C
15
1
2
0
0
0
0
0
0
0
4
1
0
D
24
5
7
0
0
0
1
3
0
1
8
0
2
E
24
6
6
0
0
1
6
0
0
3
4
0
2
F
44
4
13
5
0
0
5
0
0
5
10
0
0
G
21
4
4
0
0
0
1
5
0
9
10
0
0
H
31
5
7
1
0
0
0
1
0
2
9
0
1
I
48
4
10
0
1
0
3
1
0
0
24
0
1
J
49
15
27
4
1
1
9
10
1
3
8
0
2
K
37
5
10
0
1
1
14
0
0
2
8
1
1
L
33
6
10
0
0
1
3
0
0
5
14
1
2
M
39
6
12
1
1
0
8
0
0
2
7
0
0

2011













Player
AB
R
H
2B
3B
HR
RBI
SB
CS
BB
SO
HBP
SAC
A
14
3
2
0
0
1
2
0
0
2
2
0
0
B
46
9
12
3
1
1
8
1
0
6
14
1
0
C
16
0
2
0
0
0
0
0
0
0
8
0
0
D
38
8
12
3
0
0
0
1
0
1
2
1
0
E
39
7
17
1
0
1
8
1
0
4
7
1
0
F
29
4
4
0
0
1
4
0
0
3
13
1
2
G
37
4
10
1
0
0
5
2
0
2
10
0
0
H
26
4
7
2
1
2
4
0
0
0
10
0
1
I
40
8
9
1
2
0
3
1
0
2
15
0
0
J
44
9
17
2
1
0
3
8
0
5
14
2
0
K
15
3
3
0
0
0
1
0
0
3
9
0
0
L
20
3
6
1
0
1
6
0
0
2
7
0
0
M
43
9
15
0
1
2
10
0
0
7
13
0
0

Here are the results of an exponential smoothing with a constant of 0.5

Player
AB
R
H
2B
3B
HR
RBI
SB
CS
BB
SO
HBP
SAC
A
29.9
7.6
9.8
1.8
0.4
0.4
2.9
3.6
0.0
5.3
7.0
1.6
0.1
B
33.8
8.3
11.6
1.3
1.3
2.3
8.6
0.3
0.0
3.1
8.8
0.1
0.9
C
12.6
0.9
1.0
0.3
0.0
0.0
0.3
0.0
0.0
0.0
5.8
0.6
0.3
D
31.5
6.1
9.9
1.6
0.0
0.3
4.6
1.8
0.5
1.5
6.8
0.6
0.3
E
35.4
7.9
10.1
2.6
0.3
1.5
8.5
0.6
0.3
4.6
9.1
0.1
0.3
F
31.1
4.5
7.6
1.9
0.5
0.1
4.1
0.0
0.0
2.5
8.1
0.9
0.3
G
44.8
10.8
13.8
1.9
0.8
0.5
4.8
4.1
0.0
7.4
14.5
1.0
0.8
H
25.1
4.6
7.3
0.9
0.1
1.3
3.0
0.1
0.0
1.8
6.9
0.0
0.3
I
44.5
5.3
11.4
1.9
0.4
0.5
6.5
0.3
0.0
1.8
15.9
0.3
0.1
J
36.6
8.3
13.3
1.5
1.5
0.6
3.5
4.8
0.1
1.3
10.0
0.8
1.0
K
19.0
2.8
5.6
2.0
0.1
0.4
3.9
0.0
0.0
1.9
7.1
0.1
0.1
L
27.4
3.4
9.8
2.4
0.0
0.5
4.4
0.0
0.0
3.1
10.1
0.1
1.0
M
41.3
7.4
11.9
1.1
0.3
2.8
10.0
0.0
0.0
4.6
10.5
0.3
0.0

Here are the results of an exponential smoothing with a constant of 0.75 which gives more weight to the most recent data.

Player
AB
R
H
2B
3B
HR
RBI
SB
CS
BB
SO
HBP
SAC
A
30.1
7.0
10.0
1.6
0.2
0.2
2.5
4.0
0.0
5.4
7.3
2.3
0.0
B
29.0
6.1
10.1
0.7
1.2
1.8
6.6
0.1
0.0
2.0
8.5
0.0
1.0
C
9.8
0.6
0.5
0.2
0.0
0.0
0.2
0.0
0.0
0.0
5.4
0.8
0.2
D
31.5
6.4
9.9
1.4
0.0
0.2
6.0
1.8
0.8
1.4
7.5
0.8
0.1
E
35.9
8.8
9.4
3.4
0.2
1.4
9.2
0.8
0.2
5.3
10.6
0.0
0.1
F
29.5
4.8
7.0
1.5
0.8
0.0
3.7
0.0
0.0
2.5
7.6
1.0
0.0
G
49.6
12.4
15.0
2.5
0.6
0.4
5.0
4.6
0.0
8.7
16.8
0.8
0.9
H
28.9
5.5
8.7
0.8
0.0
1.5
3.8
0.0
0.0
2.3
7.3
0.0
0.1
I
45.3
5.4
11.5
2.1
0.1
0.8
7.5
0.1
0.0
1.9
14.9
0.2
0.0
J
33.4
7.0
11.1
1.2
1.8
0.8
3.1
2.8
0.0
0.4
10.2
0.4
1.0
K
16.6
2.7
5.8
3.0
0.0
0.2
2.5
0.0
0.0
1.5
6.1
0.0
0.0
L
28.3
2.8
10.5
3.2
0.0
0.3
4.5
0.0
0.0
2.3
10.1
0.0
1.0
M
41.5
7.9
10.9
1.2
0.1
3.8
12.0
0.0
0.0
4.7
9.9
0.2
0.0


Here is a comparison of the statistics based on a smoothing constant of 0.75 which puts more weight on the recent seasons and the statistics based on a smoothing constant of 0.5 which puts extra weight on the earlier seasons.




0.75


0.5


difference

Player
oba
slg
ops
oba
slg
ops
oba
slg
ops
A
0.467
0.420
0.888
0.452
0.448
0.900
0.015
-0.027
-0.013
B
0.390
0.642
1.032
0.402
0.656
1.058
-0.012
-0.013
-0.026
C
0.123
0.070
0.193
0.123
0.099
0.222
0.000
-0.029
-0.028
D
0.357
0.375
0.732
0.357
0.389
0.746
0.000
-0.014
-0.014
E
0.356
0.481
0.837
0.371
0.502
0.872
-0.015
-0.021
-0.036
F
0.319
0.344
0.663
0.319
0.349
0.668
0.000
-0.006
-0.006
G
0.414
0.397
0.811
0.416
0.416
0.833
-0.003
-0.019
-0.022
H
0.354
0.490
0.844
0.335
0.483
0.817
0.019
0.007
0.026
I
0.287
0.353
0.640
0.288
0.348
0.636
-0.001
0.005
0.004
J
0.348
0.544
0.892
0.395
0.536
0.931
-0.046
0.008
-0.038
K
0.402
0.576
0.978
0.363
0.474
0.837
0.038
0.103
0.141
L
0.420
0.511
0.931
0.424
0.498
0.922
-0.005
0.013
0.008
M
0.341
0.568
0.909
0.363
0.527
0.890
-0.022
0.040
0.018

Notice that player K is hitting well above his average in recent years especially in slugging percentage. 

Players B and E are hitting somewhat below average in recent years.

Player M is hitting somewhat worse in terms of on-base average and somewhat better in terms of slugging percentage in recent years. 

Players A and C are hitting somewhat worse with regards to their slugging percentage in recent years.